“天问探火”背后的功臣

5月19日,国家航天局发布了火星探测“天问一号”任务探测器着陆过程两器分离和着陆后“祝融号”火星车拍摄的影像,再次引发公众关注。

作为中国第一次真正意义上的深空之旅,火星探测的重要性和挑战性都不同于以往。利箭腾飞、祝融巡火的壮丽背后,是不容毫秒偏差的精准,是连一个弹簧都非比寻常的高科技,是从机械力学到计算机、新材料、岩土工程等多学科领域的综合,更是无数科研工作者的付出。除了我们所熟悉的发射者、设计者之外,“天问一号”背后还有哪些幕后功臣?他们赋予了“天问一号”哪些高超性能?让我们一起走近他们。

“地火传书”背后的通信员:“‘祝融号’火星车抵达后,我的生活就进入了火星时间”

5月19日晚上7时,中国航天科技集团八院“天问一号”环绕器软件主任设计师张海吃过晚饭,准时来到北京航天飞行控制中心。在和白班同事进行报表交接后,他和夜班的其他同事来到会议室,讨论汇报这一天火星探测器的运行情况。

“一切正常。”张海欣慰地说,自“祝融号”火星车5月17日首次与环绕器建立通信链路,传回“第一封家书”后,目前状态不错,通信网络也十分通畅,后期定会有更多数据传回。

“天问一号”探测器主要由环绕器和着陆巡视器(含“祝融号”火星车)两部分组成。前期,环绕器是搭载“祝融号”火星车的星际专车。在将“祝融号”火星车安全送达火星后,环绕器上升至中继轨道,此后数月它将变身通信器,建立起“祝融号”火星车与地球之间的中继通信。

地球到火星的距离是到月球距离的1000倍,最远超过4亿公里。4亿公里“长途通信”,难度可想而知。环绕器总体主任设计师牛俊坡告诉记者:“地面站与探测器间通信是通过无线电波实现的,距离越远信号衰减越大,我们接收到的信号就越微弱。此外,这种超远距离还会导致通信延时变长,一条信息从火星传回地球,最久要22分钟。更难的是,环绕器处于不断飞行运动中,不是全天候对准地球的,而信息又必须在它以特定角度、稳定姿态对准地球的情况下才能传回。”

在“祝融号”火星车着陆初期阶段,“祝融号”火星车与地面的通信通过环绕器采用UHF频段+X频段两种中继通信方式进行。为保证通信质量,团队为环绕器配置了最强“千里眼”“顺风耳”——深空应答机+高增益收发天线。X频段深空应答机负责环绕器与地面的通信,UHF频段收发信机负责“祝融号”火星车与环绕器之间通信,再加上2.5米口径的大天线,共同构成一个立体通信网。

牛俊坡笑称,自“祝融号”火星车抵达后,自己的生活就进入了火星时间。在飞控人员面前的显示器上,记者看到三种时间,一个是北京时间;一个是遥测时间,即最近一项数据从火星上传回来的时间;还有一个,就是牛俊坡说的火星时间。工作人员将“祝融号”火星车着陆的那一刻设为第一个火星日,到今天,已经是第十个火星日了。在这些紧张忙碌的火星日里,包括张海在内的8名工作人员被分成测控岗和综合电子岗,前者负责地面、环绕器、火星车之间的通信,后者负责遥控指令处理等,24小时不间断对“天问一号”进行监测遥控。这样高密度的工作将一直持续到5月底。

天问已至,求索无疆。牛俊坡笑着说,这还不是最累的时候,等通信工作结束后,环绕器将对火星进行遥感探测直到寿命结束。“现在它在中继轨道,一天绕火星转三圈;到了遥感轨道,一天就不止三圈了,任务量会更多。”

成功着陆背后的“造星人”:“把危险提前模拟出来,让它学会怎么处理”

5月15日,“天问一号”着陆巡视器降落在火星乌托邦平原南部。“稳了!”得知这一消息,天津大学建筑工程学院教授蒋明镜欢呼起来,像是自己的学生考上理想的高校一样。

如果把此次火星登陆比作高考,那发射前的试验就是模拟考,而蒋明镜教授和他的“北洋能源与环境岩土团队”就是“出卷老师”。火星探测器的着陆时间一般为7—8分钟,这几分钟无法进行人工控制,一切全要靠“祝融号”火星车自己来完成。为了让“祝融号”火星车“一次考过”,蒋明镜团队花了两年时间,在河北省怀来县模拟建造了一个火星表面,让“祝融号”火星车在此提前验证那决定成败的着陆过程。

蒋明镜的主要研究方向是岩土工程,他和石头、土块打了几十年交道,之前也参与过月壤模拟研究。但这次火星地表模拟,对他依然是个不小的挑战。

“火星引力仅为地球的38%,地形复杂,北半球是被熔岩填平的低原,南半球是充满陨石坑的高地,中间以斜坡分隔,火山地形穿插其中,比月球复杂多了!”蒋明镜说,为了尽可能真实还原,团队建造了多个场景,不仅模拟了火星地貌特征,还模拟了重力、激光特征等。

“为保万无一失,我们做了多种极端工况,把不利因素都考虑了进去,什么样最危险,我们都提前模拟出来,让它学会怎么处理。”蒋明镜介绍,光陨石坑,团队就做了几十个。目的是让“祝融号”火星车着陆时能够识别,不降落在上面。“因为陨石坑不平整,且坑内土壤的力学性能不明确,降落在上面可能会导致着陆器倾倒。”

“祝融号”火星车落在什么样的地方最好?这次着陆点选在乌托邦平原南部有什么考虑?

蒋明镜说,选在这里着陆,一方面是出于安全考虑,这里地形平缓,陨石坑较少,另一方面也源于这个地方的科学考察价值。如果仅从安全性上说,理想情况是降落在平缓的表面上。“有点像立定跳远,必须落到沙场里面,如果那附近有一块石头,就不能往上踩,踩上去脚就要扭了。”蒋明镜表示,即便落在“沙场”上,也还得保证“祝融号”火星车不会陷进去。为此,团队模拟研究了火星土壤的承载力,提前预估了这些土大约能承载多大重量。

今年32岁的石安宁是天津大学岩土工程专业的博士生,也是蒋明镜团队中的一员。他告诉记者,前半年,他们主要是在“实验室里造土”:“这是我们首次登陆火星,火星土壤什么样,谁也没见过。所以我们一方面参考了国外已有的火星探测资料,另一方面是依据团队之前研究月球土壤模拟物的经验。最后选取火山灰作为原材料,在实验室内进行物理力学试验。”

整个“造星”过程,最难的环节是施工。石安宁回忆:“为了保证按时发射,场地建设一直在赶工期,但怀来县一年中大部分时间都是低温大风天气,对施工影响很大。”

克服重重困难,2019年9月,项目如期完工。2019年10月到11月,这里进行了7次着陆器悬停避障试验。蒋明镜还记得,2019年11月14日,首次对外公开试验当天,怀来县夜晚的温度已降到零度以下。在寒冷的北风中,他怀着紧张又期待的心情目睹火星探测器升到空中六七十米高度,点火后缓慢降落到中间高度,悬停四五分钟后,平稳落在地面上。现场十几个国家的驻华大使,都赞叹不已,那一刻,蒋明镜觉得,一切辛苦都值了。

而对石安宁来说,他目前最期待下一步天问二号的火星取土返回:“我很想研究一下真实的火星土壤有什么物理力学性能,如果以后国家建设火星基地,就可以提供帮助。”

轻装上天背后的“瘦身教练”:“探测器多一克重量,增加的发射成本远超一克黄金”

奔向火星,要克服地球强大的引力,这要求“天问一号”探测器的总重量不能超过5000公斤。但远途旅行,“天问一号”要带不少“行李”——光推进剂就至少2500公斤。为了上天,“天问一号”不得不自己瘦下来——它的结构部件应用了世界上最轻的金属结构材料之一——新型镁锂合金。

“密度低、抗电磁干扰、抗辐射……”谈起镁锂合金的优点,西安交通大学材料科学与工程学院教授柴东朗如数家珍。

作为这一材料的研发者,柴东朗早在2005年,就开始了这项研究,他的灵感源自和朋友的一次聊天。“航天探测器要飞到遥远的宇宙,太胖肯定不行。”从搞航天工程的朋友口中,柴东朗得知,重量对卫星发射和火箭推力有着巨大的影响。过去,航天的主体材料大部分是铝合金,因为航天器对材料的强度及密度要求很高,只有铝合金能满足。“当时,我正在做碳化硅增强铝基复合材料的研究,这种材料性能虽高,但其密度与铝相仿。我就想能不能把它做轻一点?”柴东朗说,在所有金属中,锂的密度最低。他先试着把锂加了进去,材料的重量是减轻了,可强度也变低了。于是他又用其他合金化手段来提升材料的强度及耐热性、耐腐蚀性。在团队的不懈努力下,终于试验成功。此后,又进行开发应用,先后用了10年时间,新型镁锂合金才最终面世。与铝合金相比,同样大小,它的重量仅是铝合金的一半。

对于航天产业而言,重量减轻除了能减少对火箭推力的要求,还有一个重要意义是省钱。“探测器多一克的重量,增加的发射成本远超一克黄金。”镁锂合金生产制造方这样表示。

2016年12月22日,柴东朗在酒泉卫星发射中心目睹了自己多年的技术成果落地。那一天,长征二号丁运载火箭搭载着高分辨率微纳卫星顺利升空。这颗卫星的整体结构材料采用的就是镁锂合金。卫星升空那一刻,柴东朗没忍住,掉下了眼泪:“心情是很激动的。因为低密度的镁锂合金国外之前就有了,但咱们国家一直没有,国外也不卖给咱们。现在我们终于用上自己的新材料了!”发射结束后,柴东朗还特意去了为航天事业献身的烈士们的陵园。中国航天人一丝不苟、为国奉献的事迹让他再一次心潮澎湃。

如今,柴东朗已年逾七旬,他最初研究镁锂合金时的一头黑发也染上了岁月的风霜。但他依旧闲不下来。这几年,他带领团队对镁锂合金进行进一步改良,这次用在“天问一号”上的就是改进升级后的。“通过制备工艺改进及成分调整,现用的镁锂合金密度更低,大概是1.5克每立方厘米。而我们现在研制的第二代镁锂合金密度比这个还要低。目前,实验室的研发工作已经基本上完成了,希望能用到以后的航天产品上面。”